東北大学 西澤潤一記念研究センター内
TEL: 022-305-2351
FAX: 022-305-2352
HOME > 公開セミナー > 第9回


第9回 MEMSパークコンソーシアム 公開セミナーのご案内

「米国 U.C.Berkeleyと欧州のマイクロ・ナノ技術」

平成18年6月15日(木) 14:00-16:00
青葉記念会館(東北大学工学部内)4F 第研修室
無料 申込み不要
GETI (Global Emerging Technology Institute)
江刺・小野・田中研究室 佐藤さおり
Tel.022-795-6934, Fax 022-795-6935、E-mail
MEMSパークコンソーシアム事務局 秋山・宍戸 
TEL: 022-279-8811 FAX:022-279-8880、E-mail
「MEMS Technology Overview and MEMS for Automotive & Handhelds, The Future of MEMS」
Albert (“Al”) P. Pisano (University of California at Berkeley)

和賀 三和子氏 (GETI) 梗概


※「MEMS Technology Overview and MEMS for Automotive & Handhelds, The Future of MEMS」概要

MEMS Technology Overview and MEMS for Automotive & Handhelds The Future of MEMS

Albert (“Al”) P. Pisano,
Professor and Chair Department of Mechanical Engineering
FANUC Professor for Mechanical Systems
Director, Barkeley Sensor & Actuator Center
Professor, Electrical Engineering and Computer Sciences
University of California at Berkeley

In this seminar, current and future research directions for micro- and nano- technologies will be presented. There are two markets into which MEMS and Nanotechnology are poised to enter in a big new way: 1) new automotive sensors with new functionality and 2) sensors and RF technology for handhelds and cell phones. There exists an opportunity for new research to provide new micro- and nano-technologies that in the short run may not yet compete with the existing sensor technologies, but in the long run are likely to surpass them.

A number of micro- and nano-sensors, currently under development, will be described and reviewed. These include 1) resonant micro strain sensors to determine the smallest deflections of even the most rigid of metal automotive parts, 2) micro sensors that show promise of measuring temperature, acceleration, pressure and strain inside the automobile engine combustion chamber, 3) nanowire and nanotube sensors made using a new, room temperature fabrication method that allows the nanowires and nanotubes to be fabricated directly on CMOS chips, 4) miniaturized, low-cost, micro RF systems to detect the presence of pedestrians in the path of the vehicle and 5) new MEMS structures for extreme RF performance in radio front-ends. These devices and sensors, along with others, promise to revolutionize the automotive sensor market as well as the market for handhelds and cell phones.